Муниципальное бюджетное общеобразовательное учреждение Красноборская средняя общеобразовательная школа Агрызского муниципального района Республики Татарстан

ПРИНЯТА на заседании педагогического совета (Протокол № $\frac{1}{2}$ от $\frac{02}{2}$ $\frac{09}{2}$ 2024 г.)

Дополнительная общеобразовательная общеразвивающая программа «LEGO Spike – основы проектирования и программирования роботов»

Направленность: техническая Возрастучащихся: 7-14 лет Срок реализации программы: 2 год

Автор-составитель: Коробейникова Юлия Васильевна, педагог дополнительного образования

1. Комплекс основных характеристик дополнительной общеобразовательной общеразвивающей программы

1.1. Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Робототехника» имеет **техническую направленность**, связанную с привлечением младшего и среднего школьного возраста к современным технологиям программирования, конструирования и использования роботизированных устройств.

Уровень освоения программы: базовый.

Робототехника - увлекательное занятие в любом возрасте, она доступна, как младшим школьникам, так и старшеклассникам. Конструирование самодельного робота это процесс познания во многих областях, таких как: электроника, физика, математика, механика, программирование, инженерия. И совсем не обязательно быть инженером, чтобы создать робота. Возможность прикоснуться к неизведанному миру роботов для современного ребенка является очень мощным стимулом к изучению чего-то нового, преодолению инстинкта потребителя и формированию стремления к самостоятельному творчеству. Занимаясь с детьми на кружках робототехники, мы подготовим поколение детей нового склада, способных к совершению инновационного прорыва в современной науке и технике.

Актуальность программы обусловлена необходимостью вернуть интерес детей и подростков к научно-техническому творчеству, так как в России наблюдается острая нехватка инженерных кадров, развитие робототехники обусловлено постоянно растущим спросом на специалистов в изучаемой сфере, а так же в множестве различных сферах с технической направленностью. Занятия по программе «Робототехника» позволяют заложить фундамент для подготовки будущих специалистов нового склада, способных к совершению инновационного прорыва в современной науке и технике, а полученные на занятиях знания становятся для учащихся необходимой теоретической и практической основой их дальнейшего участия в техническом творчестве и выборе будущей профессии.

Отличительной особенностью данной программы является интеграция проверенных методик освоения базовых понятий робототехники с помощью конструкторов LEGO.

Реализация программы направлена на обучение техническому конструированию на основе образовательных конструкторов. Настоящий курс предлагает использование конструктора нового поколения: Education SPIKE Prime. Лего как инструмента для обучения детей конструированию и моделированию. Работа с образовательными конструкторами LEGO позволяет учащимся в форме познавательной игры познавать многие важные идеи и развивать необходимые в дальнейшей жизни навыки. При построении модели затрагивается множество проблем из разных областей знания - от теории механики до психологии, что является вполне естественным.

Педагогическая целесообразность программы.

Программа знакомит учащихся с инновационными технологиями в области робототехники, помогает ребёнку адаптироваться в образовательной и социальной средах. Такую стратегию обучения и помогает реализовать образовательная среда Lego, которая учит самостоятельно мыслить, находить и решать проблемы, привлекая для этого знания из разных областей, уметь прогнозировать результаты и возможные последствия различных вариантов решения, что способствует повышению интереса к быстроразвивающейся науке робототехнике и выработке таких качеств характера как воля, терпение, настойчивость, самостоятельность и инициативность. Особенности реализации программы предполагают сочетание возможности творческих способностей формирование развития индивидуальных умений И взаимодействовать в коллективе посредствам работы в группе.

Адресат программы и возрастные особенности

Возраст детей, участвующих в реализации программы с 9 до 14 лет.

Младший школьный возрасм (9-10 лем) - это не самый простой период в жизни ребенка. Идет активное развитие психики и личности. Дольше концентрируется внимание, увеличивается объем памяти. Школа, новые правила, нормы поведения сильно меняют взгляд

ребенка на мир, и в первую очередь на самого себя. Появляются новые личностные качества, начинают функционировать особые психологические механизмы. Возрастные особенности проявляются во время так называемого кризиса 7 лет. Это позитивный момент развития личности, ведь школьник начинает осознавать важность собственного «я». Деятельность становится предметной. Теперь, кроме игры проступает второе важное направление — учеба и развитие. Особенности отношения ребенка 7-10 лет к учебной деятельности складываются благодаря участию родителей и учителей.

Средний икольный возраст (11-14 лет) - переходный возраст от детства к юности, характеризующийся глубокой перестройкой организма. Психологическая особенность данного возраста - это избирательность внимания. Дети откликаются на необычные, захватывающие дела и мероприятия, но быстрая переключаемость внимания не дает возможности сосредотачиваться долго на одном и том же деле. Однако, если создаются трудно преодолеваемые и нестандартные моменты, ребята занимаются работой с удовольствием и длительное время, поскольку им нравится решать проблемные ситуации, находить сходство и различие, определять причину и следствие.

Именно в возрасте 7-14 лет возрастает необходимость накапливать знания сразу во многих сферах и достигать самого высокого результата. Дети способны на общекультурном уровне выполнять предлагаемые задания по образцу и создавать свои простые программы.Занятия по программе «Робототехника» позволяют расширить и углубить школьные знания, создаются условия для творческого развития детей, формирования позитивной самооценки, навыков совместной деятельности с взрослыми и сверстниками, умений сотрудничать друг с другом, совместно планировать свои действия и реализовывать планы, вести поиск и систематизировать нужную информацию. Программа способствует ориентации детей связать свою будущую жизнь с профессией программиста.

Количество детей в группах: 10-12 человек.

Срок реализации программы

Программа рассчитана на 1 год обучения.

Общее количество часов в год: 144 часа.

Режим занятий

Занятия проводятся 2 раза в неделю по 2 часа. Продолжительность занятия - 40 минут. После 40 минут занятий организовывается перерыв длительностью 10 минут для проветривания помещения и отдыха учащихся. На занятиях используются здоровье сберегающие технологии в виде физкультурных минуток. Они проводятся в перерыве, между занятиями, в течение 5 - 10 минут.

Форма обучения: очная.

Цель программы: развитие творческих способностей детейпосредством формирования навыков в области начального технического конструирования и основ программирования; формирование личности учащегося, способного самостоятельно ставить учебные цели и проектировать пути их реализации.

Задачи:

Обучающие:

- ознакомление с историей развития техники и современными достижениями;
- дать первоначальные знания о конструкции роботизированных устройств;
- научить приемам сборки и программирования робототизированных устройств;
- обучить владению инструментами и приспособлениями, технической терминологией;
- обучить умению строить простейшие настольные модели роботов.

Развивающие:

- развивать у детей инженерное мышление, навыки конструирования и программирования;
- развивать познавательный интерес к техническому моделированию и конструированию;

- развивать мелкую моторику, любознательность и изобретательность;
- развивать креативное мышление, пространственное воображение и конструкторские способности учащихся;
 - формировать навыки проектного мышления, способность работать в команде.

Воспитательные:

- воспитывать самостоятельность, аккуратность и внимательность в работе;
- повышать мотивацию учащихся к изобретательству и созданию собственных роботизированных систем;
- формировать у учащихся стремление к получению качественного законченного результата;
- побуждать к участию в играх, конкурсах и состязаниях роботов в качестве закрепления изучаемого материала и в целях мотивации обучения.

Планируемые результаты программы Предметные:

- владение основными приемами конструирования роботов;
- умение разбираться в основных алгоритмических конструкциях и использовать их для построения алгоритмов;
- умение различать конструктивные особенности различных роботов, сооружений и механизмов;
- умение создавать действующие модели роботов, отвечающих потребностям конкретной задачи;
- способность самостоятельно решать технические задачи в процессе конструирования роботов.

Метапредметные:

- способность ориентироваться в своей системе знаний: отличать новое знание от известного;
- умение перерабатывать полученную информацию: делать выводы в результате совместной работы группы, сравнивать и группировать предметы и их образы;
 - навыки работы по предложенным инструкциям и самостоятельно;
- способность излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
 - умение определять и формировать цель деятельности на занятии с помощью педагога;
 - умение работать в группе и коллективе;
 - наличие аналитического, практического и логического мышления;
- умение работать над проектом индивидуально и в команде, эффективно распределять обязанности и время.

Личностные:

- устойчивый интерес к робототехнике, участие в конкурсах и состязаниях моделей;
- наличие самостоятельности и самоорганизации;
- умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата;
 - умение вести себя сдержанно и спокойно.

Занятия робототехникой должны помочь учащимся достичь такие результаты, как: сформированность познавательных интересов, интеллектуальных и творческих способностей; самостоятельность в приобретении новых знаний и практических умений; мотивация образовательной деятельности школьников на основе личностно-ориентированногоподхода; формирование ценностных отношений друг к другу, педагогу, авторам открытий и изобретений, результатам обучения.

Дополнительная общеразвивающая программа разработана с учетом:

- 1. Федерального Закона Российской Федерации от 29.12.2012 г. № 273 «Об образовании в Российской Федерации»;
- 2. «Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам» (утв. приказом Министерства Просвещения Российской Федерации от 9 ноября 2018 г. № 196, с изменениями от 30.09.2020 года);
- 3. «Методических рекомендаций по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)» (утв. письмом Министерства образования и науки РФ от 18.11.15 № 09-3242);
- 4. Постановления Главного Государственного Санитарного врача Российской Федерации от 28.09.2020 года № 28 «Об утверждении санитарных правил СП 2.43648-20 «Санитарно-эпидемиологических требований к организациям воспитания и обучения, отдыха и оздоровления детей и молодёжи»;
- **5.** Устав Муниципальное общеобразовательное учреждения Красноборская средняя общеобразовательная школа Агрызского муниципального района Республики Татарстан.

1.2.Учебный план

No	Наименование модулей	Кол	ичество ч	асов	Форма аттестации / контроля
п/п		всего	теория	практ.	
1.	Вводное занятие. Инструктаж по Т/Б и правила поведения в	2	2	0	Опрос. Входная диагностика
2.	Конструктор LEGO SPIKE Prime его аппаратное обеспечение. Устройство, назначение и сборка простейших механизмов	26	8	18	Творческое конструирование собственной модели. Творческое задание. Игры.
3.	Основы программирования. Знакомство с визуальной средой программирования Scratch для конструктора LEGO SPIKE Prime	24	14	10	Тестирование по пройденному материалу. Викторина. Педагогическое наблюдение. Выполнение заданий
4.	Составление программ в среде программирования Scratch для конструктора LEGO Education SPIKE Prime и их испытание.	76	14	62	Тестирование по пройденномуматериалу. Викторина. Творческое задание. Игра Соревнования.
5.	Реализация аппаратной и программной части конструктора LEGO Education SPIKE Prime для решения практических задач.	14	0	14	Тестирование попройденному материалу. Педагогическое наблюдение. Готовый продукт
6.	Итоговое занятие	2	2	0	Рефлексия
ИТ	ого:	144	40	104	

1.3. Содержание учебного плана

1. Вводное занятие.

Теория: Беседа о технике безопасной работы и поведении в кабинете. Вводный и первичный инструктаж на рабочем месте для обучающихся.

Цели и задачи курса. Рассказ о направлениях: научно-исследовательская деятельность, научно-техническое творчество, образовательная робототехника. Обзор конструкторов образовательной серии LEGO education. Просмотр видеоролика. Беседа: «История робототехники и её виды». Актуальность применения роботов. Конкурсы, состязания по робототехнике.

Практика: Правила работы с набором-конструктором LEGO Education SPIKE Prime. Формы и виды контроля: Входной контроль знаний на начало учебного года.

2. <u>Конструктор LEGO SPIKE Prime его аппаратное обеспечение. Устройство, назначение и сборка простейших механизмов</u>

Теория: Планирование работы с конструктором.Знакомство с перечнем деталей, декоративных и соединительных элементов, электронных компонентов конструктора и передвижения. Наклейка номеров на основные элементы конструкторов.Сортировка хранение деталей конструктора контейнерах набора.Ознакомление с примерными образцами изделий конструктора LEGO Education SPIKE Prime. Определение понятий: «машина», «механизм». Принципы действия простых механизмов. Рычаги. Виды рычагов. Использование шестерен. Виды зубчатых передач Виды ременных передач. Тележки. Одномоторная тележка. Полноприводная тележка. Тележка с автономным управлением. Тележка с изменением передаточного отношения. Проведение опытов с тележкой с изменением передаточного отношения.

Практика: Правила работы с набором-конструктором LEGO Education SPIKE Prime и программным обеспечением. Учимся собирать механизмы. Тестовые практические творческие задания.

3. Основы программирования. Знакомство с визуальной средой программирования Scratch для конструктора LEGO SPIKE Prime

Теория: Понятие «программа», «алгоритм». Понятие «среда программирования», «логические блоки». Условные обозначения, применяемые в блок-схемах. Показ написания простейшей программы для робота.

Практика: Запись алгоритмов на естественном языке. Графический способ записи алгоритмов - блок-схема. Запись различных видов алгоритмов с помощью блок-схем. Составление программ в визуальной среде программирования Scratch.

4. <u>Составление программ в среде программирования Scratch для базового робота LEGO Education SPIKE Primeu их испытание.</u>

Теория: Датчик цвета. Принцип работы. Датчик расстояния. Принцип работы. Технические характеристики датчика расстояния. Способы подключения. Датчик расстояния. Принцип работы. Технические характеристики датчика расстояния. Совместное применение датчика цвета и датчика расстояния для разных ситуаций. Практика: Сборка и программирование базового робота. Составление программы управления движением робота с помощью датчика цвета по черной линии. Составление программы движения робота с датчиком расстояния при обнаружении препятствий и преодоление препятствий. Использование в конструкции датчика расстояния. Совместное применение датчика цвета, датчика расстояния и датчика касания при движении по лабиринту. Соревнования в командах с применением различных датчиков.

5. <u>Реализация аппаратной и программной части конструктора LEGO Education SPIKE Prime для решения практических задач.</u>

Практика: Выполнение проекта «Суперпогрузчик». Командное создание модели, ее программирование для задач определяемых конкретными условиями. Испытание модели и ее презентация.

6. Итоговое занятие

Рефлексия полученных знаний. Подведение итогов выступления на конкурсах и соревнованиях.

1.4. Формы аттестации / контроля планируемых результатов

Педагогический мониторинг включает в себя: предварительную аттестацию, текущий контроль, промежуточную и итоговую аттестацию.

При работе по данной программе *предварительная аттестация* проводится на первых занятиях с целью выявления образовательного и творческого уровня учащихся, их способностей. Она может быть в форме собеседования, тестирования или решения кейсовых задач.

Текущий контроль осуществляется регулярно в течение учебного года. Контроль теоретических знаний осуществляется с помощью педагогического наблюдения, тестов, опросов, дидактических игр, выполнения дифференцированных практических заданий, защиты проектов, выступлений на различных районных мероприятиях, выставках, конкурсах и соревнованияхтехнической направленности.

Промежуточная аттестация и **итоговая аттестация** проводятся в формепрактического задания, контрольного занятия, отчетных мероприятий (соревнования, конкурсы и т.д.). Система контроля знаний и умений обучающихся представляется в виде учёта результатов по итогам выполнения заданий и посредством наблюдения, отслеживания динамики развития обучающегося. Практическая деятельность оценивается качеством выполнения работ обучающихся. По итогам аттестации заполняются оценочные таблицы.

1.5. Календарный учебный график

Количество учебных недель – 36

Количество учебных дней – 72

Учебный период: сентябрь-май.

Календарный учебный график разрабатывается ежегодно и является составной частью рабочей программы. (Приложение \mathbb{N}_2 1)

2. Комплекс организационно-педагогических условий

2.1. Методическое обеспечение программы

Формы и методы

В зависимости от поставленной задачи (обучающей, развивающей, воспитательной), уровня подготовки воспитанников используются различные формы работы:

- 1. Занятия коллективные, индивидуально-групповые, межуровневые (занятия для воспитанников, освоивших или осваивающих начальные уровни программы, проводят воспитанники, освоившие более высокий уровень).
- 2. Индивидуальная работа детей, предполагающая самостоятельный поиск различных ресурсов для решения задач:
 - учебно-методических (обучающие программы, учебные, методические пособия и т.д.);
 - материально-технических (электронные источники информации);
- социальных (консультации специалистов, общение со старшеклассниками, сверстниками, родителями).
 - 3. Участие в выставках, конкурсах, соревнованиях различного уровня.

Методы в основе которых лежит деятельность детей

- Объяснительно-иллюстративный предъявление информации различными способами (объяснение, рассказ, беседа, инструктаж, демонстрация, работа с технологическими картами и др.);
 - Эвристический метод творческой деятельности (создание творческих моделей и т.д.)
- Проблемный постановка проблемы и самостоятельный поиск её решения воспитанниками;
- Программированный набор операций, которые необходимо выполнить в ходе выполнения практических работ (форма: компьютерный практикум, проектная деятельность);
- Репродуктивный воспроизводство знаний и способов деятельности (форма: собирание моделей и конструкций по образцу, беседа, упражнения по аналогу),
 - Частично-поисковый решение проблемных задач с помощью педагога;
 - Поисковый самостоятельное решение проблем;
- Метод проблемного изложения постановка проблемы педагогом, решение ее самим педагогом, соучастие обучающихся при решении.
- Метод проектов технология организации образовательных ситуаций, в которых воспитанник ставит и решает собственные задачи, технология сопровождения самостоятельной деятельности воспитанника.

Выбор методов обучения осуществляется исходя из анализа уровня готовности учащихся к освоению содержания модуля, степени сложности материала, типа учебного занятия. На выбор методов обучения значительно влияет персональный состав группы, индивидуальные особенности, возможности и запросы детей.

2.2. Условия реализации программы

Материально-техническое обеспечение:

Столы для детей- 8 шт.

Стол преподавательский -1 шт.

Стулья - 12 шт.

Шкаф - 2 шт.

Доска -1 шт.

Оборудование:

- ноутбуки/ПК 1 шт;
- МФУ лазерный;
- доступ к сети Интернет;
- наборы: LEGO Education SPIKE Prime 1 шт.

Информационно-дидактическое и методическое обеспечение:

- 1. LEGO Education SPIKE Prime комплект учебных проектов (методическое пособие);
 - 2. Книга для педагога

2.3. Оценочные материалы

Образовательные результаты по программе оцениваются как в процессе работы над проектом (с помощью тестирования (*Приложение 2*) и метода педагогического наблюдения), так и по завершении каждого проекта. Для этого используются критерии оценки по уровням и заполняется сетка категорий наблюдения.

Оценочный лист результатов предварительной, промежуточной и итоговой аттестации учащихся.

Срок проведения: декабрь, май.

Цель: оценка роста качества знаний и практического их применения за период обучения.

<u>Форма проведения:</u> практическое задание, контрольное занятие, тестирование.отчетные мероприятия (соревнования, конкурсы, викторины).

Содержание аттестации.

Сравнительный анализ качества выполненных работ начала, середины и конца учебного года (выявление уровня знаний и применения их на практике).

Форма оценки: уровень (высокий, средний, низкий).

Критерии оценивания обучающихся

№ п\п	Параметры оценки		Критерии оценки	
11 (11		Высокий уровень	Средний уровень	Низкий уровень
1.	Технология	Соблюдение всех технологических приемов	Допущены единичные нарушения технологии	Несоблюдение технологии
2.	Воплощение технического образа	Технический образ воплощен в работе	Неубедительное воплощение технического образа в работе	Отсутствие в работе творческого замысла
3.	Личностный рост (на основе наблюдений педагога)	Самостоятельность в работе, дисциплинированнос ть, аккуратность, умение работать в коллективе, тщательность проработки изделий, развитие фантазии и творческого потенциала	неполная	Неусидчивость, неумение работать в коллективе и самостоятельно
4.	Личные достижения (участие в различны конкурсах, выставка соревнованиях)	Участие	Не учитывается	Не учитывается

№ п\п	ФИО	Сложность	Соответствие	Презентация	Степень	Кол-во
	обучающегося	продукта (по	продукта	продукта.	увлеченности	вопросов и
		шкале от	поставленной	Степень	процессом и	затруднений
		0 до 5 баллов)	задаче от 0 до	владения	стремления к	за одно
			5 баллов	специальными	оригинальност	занятие
				терминами	и от 0 до 5	
				от 0 до 5	баллов	
1						
_						
2						

Список литературы

Для педагога:

Белиовский Н.А. Использование LEGO-роботов в инженерных проектах школьников. Отраслевой подход./ Н.А.Белиовский, Л.Г. Белиовская.— М.: Изд-во Ассоциации с вузов, 2015.

Вязовов С.М. Соревновательная робототехника: приемы программирования в среде EV3 / С.М. Вязовов, О.Ю. Калягина, К.А. Слезин. – М.: 2013.

Зайцева Н.Н. Конструируем роботов на lego. Человек — всему мера? / Н.Н. Зайцева. — М.: Изд-во Лаборатория знаний, 2014.

Филиппов С. А. Уроки робототехники. Конструкция. Движение. – М.: Управление. 2017.

Для учащихся:

Автоматизированные устройства. ПервоРобот. Книга для учителя. LEGOGroup, перевод ИНТ, 2012. - 134c.

Барсуков А. Кто есть кто в робототехнике. - М., 2005. - 125 с.курс / Под ред. Н.В. Макаровой. СПб.: Питер, 2000.

Леонтьев В.П. Новейшая энциклопедия ПК. - М., ОЛСМ-ПРЕСС, 2003.

Макаров И.М., Толчеев Ю.И. Робототехника. История и перспективы. - М., 2003. - 349с. Наука. Энциклопедия. - М., «РОСМЕН», 2000. - 125с.

Образовательная робототехника «Обзор решений 2014 года». Компания ITS технический партнер программы поддержки молодых программистов и молодежных IT-проектов. - ITS-robot, 2014.

Попов Е.П., Письменный Г.В. Основы робототехники: Введение в специальность: Учеб. Для вузов по спец. «Робототехнические системы и комплексы» - М.: высш. Шк., 2004. - 224 с., ил. Рыкова Е.А. Lego-Лаборатория (LegoControlLab). Учебно-методическое пособие. - СПб, 2000. - 59 с.

Для учащихся и родителей:

Крайнев А.Ф. Первое путешествие в царство машин. - М., 2007г. - 173с.

Чехлова А. В., Якушкин П. А. «Конструкторы LEGO DAKTA в курсе информационных технологий. Введение в робототехнику». - М.: ИНТ, 2001 - 76с.

Филиппов С.А. Робототехника для детей и родителей - СПб.: Наука, 2010. - 263 с., ил.

ШахинпурМ. Курс робототехники. Перевод с англ. - М.: Мир, 2001. - 527 с., ил.

Интернет-ресурсы

http://www.membrana.ru/ - Люди. Идеи. Технологии.

http://www.prorobot.ru/ - Роботы и робототехника

http://myrobot.ru/ - Роботы. Робототехника. Микроконтроллеры.

http://www.int-edu.ru/logo/products.html - ИНТ. Программные продукты Лого.

http://www.int-edu.ru/lego/catalog/techno.htm - ИНТ. Наборы LEGO DACTA для образовательной области "Технология".

Федеральный портал «Российское образование». http://www.edu.ru.

Международная федерация образования. http://www.mfo-rus.org.

Образование: национальный проект.

http://www.rost.ru/proiects/education/education main.shtml

ГОУ Центр развития системы дополнительного образования детей РФ.

http://www.dod.miem.edu.ru.

Российское школьное образование. http://www.school.edu.ru

Портал «Дополнительное образование детей». http://vidod.edu.ru

Календарно-тематическое планирование дополнительной общеобразовательной общеразвивающей программы

«LEGO Spike – основы проектирования и программирования роботов»

№ п/п	Наименование разделов и тем занятий	Кол- во часо		оведения ятия	Формы организации занятий	Формы аттестации/	
	занятии	В	План	факт	занятии	контроля	
	Вводное занятие	2					
1	Инструктаж по ОТ и ТБ. Что такое робототехника. Исторические сведения. Цели и задачи программы.	2			Лекция. Видеофильм	Опрос. Входная диагностика	
	Конструктор LEGO SPIKE Prime его аппаратное обеспечение. Устройство, назначение и сборка простейших механизмов	26					
2	Знакомство с деталями конструктора. Нумерование деталей конструктора и размещение по лоткам.	2			Практическая работа	Игра «Покажи деталь»	
3	Обзор модуля Smarthub. Экран, кнопки управления, индикатор состояния, порты.	2			Беседа. Видеофильм	Наблюдение, выполнение заданий	
4	Подключение датчиков касания, цвета, расстояния, к различным портам Хаба.	2			Беседа. Видеофильм	Наблюдение	
5	Конструкции. Изучение схем различных конструкций применяемых в жизни	2			Беседа, демонстрация	Фронтальный опрос	
6	Обзор сервомоторов, их характеристика. Основные показатели (обороты в минуту, крутящий момент, точность). Устройство, режимы работы.	2			Беседа. Видеофильм	Педагогическое наблюдение	

7	Изучение зубчатых передач	2	Беседа, демонстрация	Опрос, тестирование
8	Виды рычагов и манипуляторов. Применение рычагов	2	Беседа, демонстрация	Педагогическое наблюдение, выполнение заданий
9	Изучение рычажных механизмов	2	Беседа, демонстрация	Викторина «Рычажные механизмы»
	Сборка моделей с использованием зубчатых передач, рычагов и манипуляторов.	2	Практическая работа	Наблюдение, опрос
	Сборка моделей с использованием зубчатых передач, рычагов и манипуляторов.	2	Практическая работа	Наблюдение, опрос
12	Создание полноприводной тележки.	2	Практическая работа	Наблюдение, опрос
13	Проведение опытов с тележкой и анализ результатов.	2	Практическая работа	Наблюдение, тестирование
14	Соревнование между командамина быстроту сборки и соответствие собранной модели схемы.	2	Работа в командах	Педагогическое наблюдение
	Основы программирования. Знакомство с визуальной средой программирования Scratch для конструктора LEGO SPIKE Prime	24		
15	Знакомство с текстовой и визуальной средами программирования. Визуальная среда программирования Scratch.	2	Лекция, видеофильм, работа в программе, упражнения	Фронтальный опрос
16	Программирование в визуальной средепрограммирования Scratch.	2	Работа в программе, упражнения	Наблюдение, опрос
17	Подключение Хаба к компьютеру с предварительно установленным на нем ПО по кабелю и через Bluetooth. Апробация простейших программ созданных из блоков Scratch	2	Лекция, видеофильм, Практическая работа	Наблюдение, опрос

18	Основы программирования в визуальной средеScratch для Lego Spike Prime. Понятие алгоритма.	2	Лекция, видеофильм,	Фронтальный опрос
19	Виды алгоритмов. Составление простых алгоритмов. Запись алгоритмов на естественном языке. Правила записи алгоритмов	2	Лекция, видеофильм	Фронтальный опрос
20	Запись алгоритмов на естественном языке.	2	работа	Творческаяработа «Написание собственного алгоритма»
21	Графический способ записи алгоритмов - блок-схема. Условные обозначения, применяемые в блок-схемах.	2	Лекция, видеофильм	Фронтальный опрос
22	Запись различных видов алгоритмов с помощью блок-схем.	2	Лекция, видеофильм	Фронтальный опрос
23	Запись различных видов алгоритмов с помощью блок-схем.	2	работа	Творческая работа «Составление алгоритмапомощью блок-схемы»
24	Понятие «программа». Ознакомление с визуальной средой программирования Scratch. Интерфейс. Основные блоки	2	Лекция	Фронтальный опрос
25	Составление программ в среде программирования Scratch	2	Беседа, практическая работа	Фронтальный опрос
26	Составление программ в среде программирования Scratch.	2	работа	Творческое задание «Составление программы с помощью блоков»
	Составление программ в среде программирования Scratch для базового робота конструктора LEGO SPIKE Primeu их испытание.	76		

27	Сборка базового робота из конструктора LEGO SPIKE Prime.	2	Ле	кция, видеофильм	Практическая работа, собранная модель.
28	Программирование моторов робота.	2	Ле	кция, видеофильм	Наблюдение, фронтальный опрос
29	Программирование моторов робота.	2	Ле	кция, видеофильм	Наблюдение, фронтальный опрос
30	Датчик цвета. Принцип работы. Способы подключения. Определение чувствительности датчика цвета. Зависимость от различных факторов.	2		седа, практическая бота	Фронтальный опрос
31	Составление алгоритма, блок-схемы управления движением робота с помощью датчика цвета по черной линии.	2	МО	здание и описание дели с помощью ок- схем	Наблюдение, фронтальный опрос
	Составление программы управления движением робота с помощью датчика цвета по черной линии. Загрузка программы в робот.	2		седа, практическая бота	Наблюдение, фронтальный опрос, самостоятельная работа
33	Движение базового робота по черной линии. Тестирование программы.	2	Пр	актическая работа	Наблюдение, фронтальный опрос
34	Изготовление полигона для движения базового робота.	2	Пр	актическая работа	Наблюдение.Практичес кая работа, собранная по схеме модель, полигона
35	Движение базового робота по полигону. Корректировка программы для улучшения движения робота по полигону.	2		седа, практическая бота	Наблюдение выполнения практической части
36	Подготовка к соревнованию на время прохождения роботом полигона	2		седа, практическая бота	Наблюдение.
37	Соревнования в команде на время прохождения роботом полигона.	2	Иг	ра "Весёлые старты".	Соревнования роботов
38	Датчик расстояния. Принцип работы. Технические характеристики датчика расстояния. Способы подключения.	2		кция, видеофильм актическая работа	Наблюдение, фронтальный опрос

39	Составление алгоритма, блок-схемы движения робота с датчиком расстояния при обнаружении препятствий.	2	Создание и описание модели с помощью блок- схемы	Самостоятельная работа
40	Составление программы движения робота с датчиком расстояния при обнаружении препятствий. Загрузка программы в робот.	2	Составление программы в среде программирования Анализ программы	Наблюдение. Самостоятельная работа
41	Изучение возможностей действий робота с датчиком расстояния.	2	Беседа, практическа работа	я Наблюдение
42	Изготовление полигонов для движения базового робота по окружности.	2	Практическая работа	Наблюдение
43	Изучение возможностей совместного применения датчика цвета и датчика расстояния	2	Беседа, демонстрация	Опрос, тестирование
44	Составление алгоритма и блок-схемы совместного применения датчика цвета и датчика расстояния для удаления препятствий с пути движения робота.	2	Создание и описание модели с помощью блок- схемы	Самостоятельная работа
45	Составление программы совместного применения датчика цвета и датчика расстояния для удаления препятствий с пути движения робота.	2	Составление программы в среде программирования Анализ программы	Выполнение заданий, опрос
46	Загрузка программы в базовый робот и её отладка. Определение оптимальных параметров.	2	Беседа, демонстрация	Педагогическое наблюдение, выполнение заданий
47	Подготовка к участию в соревновании по выталкиванию кеглей с площади полигона	2	Беседа, демонстрация	Тестирование «Зубчатые передачи»
48	Подготовка к участию в соревновании по выталкиванию кеглей с площади полигона	2	Создание и описание модели с помощью бло схемы	Творческое задание «Написание собственного алгоритма»
49	Соревнования в командах по скорости	2	Практическая работа в команде	Соревнование роботов. Педагогическое

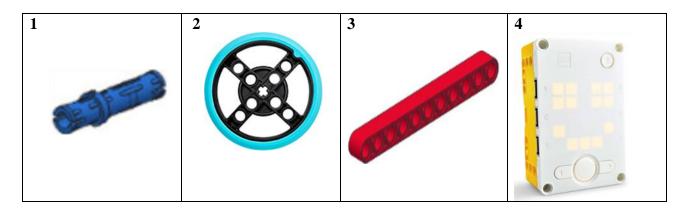
	выталкивания кеглей с площади			наблюдение.
	полигона «Кегельринг»			
50	Датчик касания. Принцип работы. Технические характеристики датчика касания. Способы подключения.	2	Беседа, демонстрация	Педагогическое наблюдение, выполнение заданий
51	Составление алгоритма, блок-схемы движения робота с датчиком касания.	2	Создание и описание модели с помощью блок схемы	Педагогическое наблюдение, выполнение заданий
52	Составление программы движения робота с датчиком касания при обнаружении препятствий. Робот –жук. Загрузка программы в робот.	2	Составление программы в среде программирования. Ана лиз программы	Педагогическое наблюдение, выполнение заданий
	Тестирование программы робот-жук. Улучшение устройства касания для прохождения углов.	2	Практическая работа	Педагогическое наблюдение, выполнение заданий
54	Составление алгоритма и блок-схемы совместного применения датчика цвета и датчика расстояния и датчиком касания при движении по лабиринту.	2	Создание и описание модели с помощью блок- схемы	Педагогическое наблюдение
55	Составление программы совместного применения датчика цвета, датчика расстояния и датчика касания при движении по лабиринту.	2	Составление программы в среде программирования Анализ программы	Практическая работа
56	Исследование влияния конструктивных параметров на устойчивость и скорость прохождения полигона роботом.	2	Практическая работа. Анализ параметров, влияющих на движение робота	Педагогическое наблюдение, выполнение заданий
57	Подготовка к соревнованию по скорости прохождения лабиринта	2	Практическая работа в команде.	Педагогическое наблюдение, выполнение заданий
58	Соревнованиена время прохождения лабиринта	2	Практическая работа в команде.	Соревнование роботов. Педагогическое наблюдение.

59	Составление алгоритма и блок-схемы совместного применения датчика цвета и датчика расстояния и датчиком касания при подготовке роботасумоиста	2	Создание и описание модели с помощью блок- схемы	Педагогическое наблюдение
60	Составление программы совместного применения датчика цвета, датчика расстояния и датчика касания для робота-сумоиста	2	Составление программы в среде программирования Анализ программы	Педагогическое наблюдение
61	Отладка программы совместного применения датчика цвета, датчика расстояния и датчика касания для робота-сумоиста на полигоне	2	Составление программы в среде программирования Тестирование программы	Педагогическое наблюдение
	Подготовка роботов -сумоистов к соревнованиям	2		Педагогическое наблюдение, выполнение заданий
63	Подготовка роботов -сумоистов к соревнованиям	2	Практическая работа в команде.	Педагогическое наблюдение
64	Соревнование в группах по сумо среди роботов	2	Практическая работа в команде.	Соревнование роботов
	Реализация аппаратной и программной части конструктора LEGO SPIKE Prime для решения практических задач.	14		
65	Выполнение проекта «Суперпогрузчик» Конструирование устройства управления для захвата предметов.	2	Самостоятельная работа в команде	Педагогическое наблюдение, выполнение заданий
66	Выполнение проекта «Суперпогрузчик» Конструирование устройства управления для захвата предметов. Захват предметов одинаковой массы, но разного размера.	2	Самостоятельная работа в команде	Педагогическое наблюдение, выполнение заданий

67	Выполнение проекта	2	Самос	стоятельная работа	
	«Суперпогрузчик» Конструирование		В КОМА		
	устройства управления для захвата				Педагогическое
	предметов. Захват предметов				наблюдение,
	одинакового размера, но разноймассы.				выполнение заданий
68	Выполнение проекта	2	Самос	стоятельная работа	Педагогическое
	«Суперпогрузчик» Конструирование		В кома	анде	наблюдение,
	устройства управления для захвата				выполнение заданий
	предметов разного цвета.				
69	Выполнение проекта	2	Самос	стоятельная работа	Педагогическое
	«Суперпогрузчик».Тестирование		В КОМ2		наблюдение,
	программы для оптимизации			, ,	выполнение заданий
	поставленных задач.				
70	Выполнение проекта	2	Самос	стоятельная работа	Педагогическое
	«Суперпогрузчик».Тестирование		в кома		наблюдение,
	программы для оптимизации				выполнение заданий
	поставленных задач.				
71		2	Демон	нстрация	Оценка проекта
	п			оставленных	•
	Презентация моделей			ИИЗМОВ	
			упраж	кнения	
	Итоговое занятие	2			
72		2	Самос	стоятельная работа	Итоговый тест по
	II.			=	программе
	Итоговое тестирование				Робототехника»
					Приложение 2
	Итого:	144			•

Оценочные материалы

Тест по робототехнике 1.


- 1. Какие датчики входят в базовый набор LEGO Spike Prime? (указать все имеющиеся)
 - а) Датчик звука б) Датчик расстояния в) Датчик цвета г) Датчик силы

2. Установите соответствие

- а)Датчик силы (касания).
- б)Ультразвуковой датчик.
- с)Датчик цвета.
- 3. Устройством, позволяющим роботу определять расстояние до объекта и реагировать на движение является...
 - а). Датчик силы (касания)
 - б). Датчик расстояния
 - в). Датчик цвета
 - г). Датчик звука
- 3. Сервомотор это...
 - а). устройство для определения цвета
 - б). устройство для проигрывания звука
 - в). устройство для движения робота
 - г). устройство для хранения данных
- 4. Какой разъем есть у робота для его подключения к компьютеру по кабелю?
- a) USB Type A. б) Mini USB B. в) USB Type. г) Micro USB.
- 5. Сколько сегментов у экран Хаба?
- а). 10. б). 15. в). 20. г.). 25
- 6. Как можно подключить хаб к компьютеру? (Выберите все подходящие варианты)
- а). Wi-Fi. б). Bluetooth. в). ИК-порт. г). Провод

7. Установите соответствие

- а). Хаб. в). Штифт. в). Колесо. г). Балка.
- 8. На каких операционных системах можно запустить среду разработки LEGO Spike Prime? Выберите все подходящие варианты
- a). MacOS. б). Windows. в). Android. г). Linux.
- 9. Какое количество цветов определяет датчик цвета конструктора LEGO SPIKE Prime?
- а). 8. б). 6. в).7. г).10.
- 10. Совокупность механизмов, заменяющих человека или животное в определенной области; используется она главным образом для автоматизации труда. Укажите соответствующий данному определению термин:
 - а). Механизм
 - б). Машина
 - в). Робот
 - г). Андроид
- 11. Какой древнегреческий бог создавал человекоподобных механических слуг?
 - а. Зевс
 - б. Арес
 - в. Гефест
 - г. Аполлон
- 12. Что означает слово кибернетика?
 - а) Искусство рисовать
 - б) Искусство управлять
 - в) Искусство создавать

Тест по робототехнике 2.

1). Робототехника - это ...

- а) раздел физики, наука, изучающая движение материальных тел и взаимодействие между ними.
- б) прикладная наука, занимающаяся разработкой автоматизированных технических систем и являющаяся важнейшей технической основой интенсификации производства.
- в) наука о методах и процессах сбора, хранения, обработки, передачи, анализа и оценки информации с применением компьютерных технологий, обеспечивающих возможность её использования для принятия решений.
- 2). Датчик цвета это
- а) это аналоговый датчик, который может определять, когда красная кнопка датчика нажата, а когда отпущена.
- б) это цифровой датчик, который обнаруживает вращательное движение по одной оси.
- в) это цифровой датчик, который может обнаруживать инфракрасный цвет, отраженный от сплошных объектов.
- г) это цифровой датчик, который может определять цвет или яркость света.
- 3).Какие элементы обеспечивают работу датчика цвета? (Выберите все подходящие варианты)
- а). Светодиод.
- б). Лампа накаливания.
- в). Фотоприемник.
- г). Сервомотор.

4. Какому цвету соответствет значение датчика цвета в режиме определения яркости отраженного света, близкое к 100?

- а). Серый.
- б). Зеленый.
- в). Белый.
- г). Красный.

5). Датчик касания подключается к модулю LEGO SPIKE Prime через порт....

- a) ABCD
- б) CD
- в) EF
- г) Любой.

6) Что означает в робототехнике слово «терминатор»?

- а) имя робота из одноименного фильма
- б) границу между светлой и темной частью игрового поля
- в) поглотитель энергии (обычно резистор) на конце длинной линии, сопротивление которого равно волновому сопротивлению линии

7) Какими способами невозможно подключить хаб к компьютеру?

- а) USB кабель
- б) WI FI
- в) Bluetooth
- г) IrDA (ИК порт)

8) Как называется техническое устройство, выполняющее механические движения для преобразования энергии, материалов и информации?

- а) машина
- б) механизм
- в) узел
- г) деталь

9) Укажите, какое из перечисленных устройств, подключенных к Хабу, является устройством ввода информации:

- а) электродвигатель
- б) датчик освещенности
- в) кабель с microUSB

10) Укажите верное (ые) высказывание (я)

- а) Блок цикл используется для повторения серии действий
- б) Использование блока случайной величины для перемещения приводной платформой со случайно выбранной скоростью и случайностью и в случайно выбранном направлении
- в) Блок операции с данными текст, служит для отображения показателей датчиков в режиме реального времени

11) Устройством, позволяющим роботу определить расстояние до объекта и реагировать на движение, является...

- а) Ультразвуковой датчик
- б) Датчик звука
- в) Датчик цвета
- г) Гироскопический датчик

12) для чего служит штифт?

- а) для крепления балок
- б) для крепления оси
- в) для крепления мотора

Итоговый тест по программе «Робототехника»

1). Для обмена данными между хабом и компьютером используется...

WiMAX

РСІ порт

WI-FI

USB порт

2). Верным является утверждение...

- a). Хаб Spike Prime имеет 2 выходных и 4 входных порта
- б). Хаб Spike Prime имеет 4 входных и 2 выходных порта
- в). Хаб Spike Prime имеет 6 равнозначных порта
- г). Хаб Spike Prime имеет 3 выходных и 3 входных порта

3). Устройством, позволяющим роботу определить расстояние до объекта и реагировать на движение, является...

Ультразвуковой датчик

Датчик звука

Датчик цвета

Гироскоп

4). Сервомотор – это...

устройство для определения цвета устройство для движения робота устройство для проигрывания звука устройство для хранения данных

5). К основным типам деталей LEGO SPIKE Prime относятся...

шестеренки, болты, шурупы, балки балки, штифты, втулки, фиксаторы балки, втулки, шурупы, гайки штифты, шурупы, болты, пластины

6). Для подключения датчика к хабу Spike Prime требуется подсоединить один конец кабеля к датчику, а другой...

- а). к одному из входных (Е,F) портов хаба
- б). оставить свободным
- в). к аккумулятору
- г). к любому из портов хаба

7). Для подключения сервомотора к хабу Spike Prime требуется подсоединить один конец кабеля к сервомотору, а другой...

- а). к одному из входных (Е,F) портов хаба
- б). оставить свободным
- в). к аккумулятору
- г). к любому из портов хаба

8). Наибольшее расстояние, на котором ультразвуковой датчик может обнаружить объект...

- а).50 см.
- б).100 см.
- в).3 м.
- г).200 см.

9). Для чего служит хаб Spike Prime?

- а). Служит центром сбора информации
- б). Служит центром управления и энергетической станцией для робота
- г). Служит центром обработки информации

10). Какие волны используются в датчике расстояния?

- а). ультракороткие
- б). световые
- в). ультразвуковые
- г). инфракрасные

11).Как обозначаются порты вывода на модуле?

- a). 1,2,3,4,5,6.
- б). А,В,С,1,2,3.
- в). A1,B2,C3,D4,E5,F6.
- г). A,B,C,D,E,F.

12). Как обозначаются порты ввода на модуле?

- a). 1,2,3,4,5,6.
- б). A,B,C,1,2,3.
- в). A1,B2,C3,D4,E5,F6.
- г). A,B,C,D,E,F.

13. Какие языки программирования поддерживает среда разработки LEGO Spike Prime?

(Выберите все подходящие варианты)

- a). Pascal
- б). Python
- B). C/C^{++}
- г). Scratch

14. Напишите 2 программы, выбранные случайным образом:

1. Робот обнаруживает препятствие.

На роботе датчик касания смотрит вперед. Робот начинает двигаться. Как только обнаружится касание с препятствием, робот должен остановиться.

- Из скольких блоков состоит ваша программа?
- Остановился робот сразу после касания или еще пытался продолжить двигаться?
- За счет какого действия в программе нужно остановить робота, сразу после обнаружения нажатия?

2.Простейший выход из лабиринта.

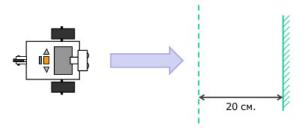
Напишите программу, чтобы робот выбрался из лабиринта вот такой конфигурации:

- Что нужно сделать роботу после касания со стенкой?
- В какую сторону должен крутиться мотор, чтобы робот мог выполнить разворот беспрепятственно?
- Сколько раз робот должен сделать одинаковые действия?

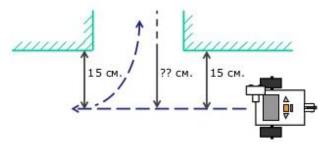
3. Ожидание событий от двух датчиков.

Установите на роботе два датчика касания – один смотрит вперед, другой – назад.

Напишите программу, чтобы робот менял направление движения на противоположное при столкновении с препятствием, при этом:

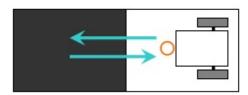

- При движении вперед опрашивается передний датчик
- При движении назад опрашивает задний датчик

4. Управление звуком.

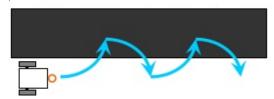

- Робот должен начать двигаться после громкого хлопка.
- После еще одного хлопка робот должен повернуть на 180 градусов и снова ехать вперед
- Использовать цикл, чтобы повторять действия из шага 2.

5. Робот обнаруживает препятствие.

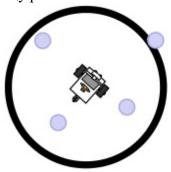
Датчик расстояния на роботе смотрит вперед. Робот двигается до тех пор, пока не появится препятствие ближе, чем на 20 см.


6.Парковка. Датчик расстояния смотрит в сторону. Робот должен найти пространство для парковки между двумя «автомобилями» и выполнить заезд в обнаруженное пространство.

7. Черно-белое движение.


Пусть робот доедет до темной области, а затем съедет обратно на светлую.

Добавьте цикл в программу – пусть робот перемещается вперед-назад попеременно, то на темную, то на светлую область.


8. Движение вдоль линии.

Пусть робот перемещается попеременно, то на темную, то на светлую область. Движение должно выполняться поочередно то одним, то другим колесом. Используйте линии разной толщины.

9.Робот-уборщик.

Роботу понадобятся датчик расстояния и цвета. Задача робота обнаружить внутри ринга весь мусор и вытолкнуть их за черную линию, ограничивающую ринг. Сам робот не долен выезжать за границу ринга.

10. Красный цвет – дороги нет.

Робот-тележка должен пересекать черные полоски – дорожки, при пересечении говорить «Black». Как только ему встретиться красная дорожка – он должен остановиться. Задание нужно выполнить с использованием вложенных условий.

